
1

Distributed Multipath Routing Algorithm
for Data Center Networks

Eun-Sung Jung, Venkatram Vishwanath, Rajkumar Kettimuthu, Mathematics and Computer Science Division
Argonne National Laboratory

Email: {esjung,venkatv,kettimut}@mcs.anl.gov

Abstract—Multipath routing has been studied in diverse con-
texts such as wide-area networks and wireless networks in order
to minimize the finish time of data transfer or the latency of mes-
sage sending. The fast adoption of cloud computing for various
applications including high-performance computing applications
has drawn more attention to efficient network utilization through
adaptive or multipath routing methods. However, the previous
studies have not exploited multiple paths in an optimized way
while scaling well with a large number of hosts for some reasons
such as high time complexity of algorithms.

In this paper, we propose a scalable distributed flow scheduling
algorithm that can exploit multiple paths in data center networks.
We develop our algorithm based on linear programming and
evaluate the algorithm in FatTree network topologies, one of
several advanced data center network topologies. The results
show that the distributed algorithm performs much better than
the centralized algorithm in terms of running time and is
comparable to the centralized algorithm within 10% increased
finish time in terms of data transfer time.

I. INTRODUCTION

As data from experimental or observational facilities in
scientific computing are growing [1], data-intensive computing
is drawing more attention. Even in government and IT sectors,
more data-intensive applications are emerging in response to
increased needs for data analysis.

Many enabling technologies have been developed to run
data-intensive applications in big facilities such as data centers.
Data movement is one of the essential components to be
improved for data-intensive computing since I/O is usually
considered to be slower than computation. The data movement
beyond physical machines happens in two cases: (1) data
transfers over wide-area networks for distributed computing
across multiple sites and (2) data transfers over interconnection
networks for large-scale/high-performance computing within a
single site.

In particular, the data center networks and associated data
flow scheduling play an important role in large-scale data-
intensive computing. Various network topologies have been
proposed such that quality of services for data movements
such as latency and throughput is satisfied while scaling well
with large-scale applications running up to thousands of nodes.
The advanced network topologies proposed recently include
FatTree and Dragonfly topologies. A large amount of research
also has been conducted on data flow scheduling algorithms.
Particularly in the context of data center networks, recent
studies [2], [3] show that exploitation of diverse paths between

a sender and a receiver in an intelligent way improves the per-
formance of data movements. However, the previous studies
have not fully addressed data movement via multiple paths
since they utilize multiple paths among nodes by choosing the
best single path per data flow adaptively. In addition, most
data flow scheduling algorithms implementing multiple paths
per data flow are limited in scalability; hence, such algorithms
are not useful for a large-scale network in practice.

In this paper, we focus on data movements using multi-
ple paths over data center networks where data paths can
be explicitly established by the system administrator (e.g.,
openflow-based networks). More specifically, our contributions
include development of distributed multipath routing algo-
rithms.

The rest of the paper is structured as follows. In Section
II, we present general knowledge and current issues regarding
data center networks and data-intensive applications. In Sec-
tion III, we describe the problem statement and the mathemati-
cal formulation for centralized data flow scheduling. In Section
IV, we present the distributed data flow scheduling algorithm
derived from the centralized one. In Section V, we present
experimental results evaluating our proposed algorithm, and
in Section VI, we describe related work in detail. In Section
VII, we summarize our work and conclude with future work.

II. BACKGROUND

We describe the state of the art in data center networks
and challenges of deploying data-intensive applications in data
centers.

A. Data Center Networks

Data center networks should be able to guarantee high
throughput and resiliency. For such reasons, typical data
center networks (e.g., FatTree) [4] are evolving into high-radix
networks (e.g., Dragonfly) [5]. In this paper, we consider a k-
ary FatTree topology as in Figure 1 where k port switches are
used in the three-layer architecture. The important features of
the k-ary FatTree are that it supports k3/4 hosts and there are
(k2)

2 paths available between hosts in different pods. Figure
2 shows an example of the Dragonfly topology with 72 hosts.
The Dragonfly topology uses a group of subnetworks as a
virtual high-radix router to build high-performance networks
with very low global diameter.

However, multiple paths have not been used appropriately
to maximize the utilization of data center networks. Hedera

2

S

H

S

S S

H H H

S

H

S

S S

H H H

S

H

S

S S

H H H

S

H

S

S S

H H H

S S S S

Pod 0 Pod 1 Pod 2 Pod 3

Fig. 1: FatTree topology when k=4 [4]: Circles represent
switches and boxes represent hosts.

H

S S

H H H

Group 0

H

S S

H H H

Group 1 Group 2 Group 3

Fig. 2: Example of Dragonfly topology with 72 hosts.

[2] tried to improve the network utilization by mitigating the
network bottleneck caused by multiple data transfers through
rerouting some of them. Some researchers proposed fault-
tolerant routing algorithms using path redundancy in data
center networks [6], [7]. Even though multipath algorithms for
multiple data transfers have been proposed in the context of
wide-area networks, few of them has been applied to intercon-
nection networks because of their high time complexities. At
the protocol level, MPTCP has been deployed on interconnect
networks and shows some promising results [8].

B. Data-Intensive Applications

Many applications including MapReduce and scientific
computing for big data can be considered as data-intensive
applications. Examples of data-intensive scientific computing
are high energy physics and climate science [1].

One of the requirements of data-intensive applications for
data center platforms is fast data movement because the
number of data transfers in data-intensive applications is larger
than in compute-intensive or commodity applications and often
leads to a network bottleneck in overall performance [9],
[10]. In order to mitigate network bottleneck in data center
platforms, data center networks should be able to provide
enough bandwidth among hosts (i.e., bisection bandwidth of
a data center network,) and the data flow management system
should be able to achieve high data transfer throughput by
efficient routing. For instance, if two data flows are allocated
two single paths sharing a low bandwidth link, the network
utilization would be much lower than two data flows with
multiple disjoint paths.

III. PROBLEM FORMULATION

In this section, we present system models for our problem
formulation and an LP-based formulation for centralized data
flow scheduling.

A. System Model

Most of our notations are adopted from [11], and we will
use the terms data transfer and job interchangeably in this
paper. The interconnection network is represented by G =
(V,E,TB), where V is a set of nodes (switches), E is a
set of edges representing connectivity among switches, and
TB is a set of time-bandwidth lists representing bandwidth
availability over time. For example, TBi is associated with
ith edge, ei ∈ E. TBi(t) is the available bandwidth at time
slice t.

The bulk data transfer requests are given as a set R =
{r|r = (si, di, Di, Si), 1 ≤ i ≤ n}, where si and di are a
source and a destination of data transfer, Di is the size of
data, and Si is the time when the data become available for
transfer.

These models are for both on-demand and in-advance job
scheduling. In general, the in-advance job scheduling problem
is more complex than the on-demand job scheduling problem
because the time-varying bandwidth on network links and
future job requests should be considered additionally for the
in-advance job scheduling problem. In this paper, to make
the problem simple, we focus only on the on-demand job
scheduling problem where TB is a list of only one entry and
Si becomes 0, representing the current time.

B. Multipath Routing Problem

In this paper, we define the multipath routing problem as
follows: Given a network G = (V,E,TB) and a set of job
requests R = {r|r = (si, di, Di, Si = 0), 1 ≤ i ≤ n}, find
the multipath routing to minimize the finish time until all the
job requests are completed.

Depending on how the controllers manage the network paths
for the job requests, we can classify the problem further
into two categories: the centralized multipath routing prob-
lem (CMRP) and the distributed multipath routing problem
(DMRP). The CMRP is to find the centralized multipath
routing algorithm that is run at a single management node
while the DMRP is to find the distributed multipath routing
algorithm that is run at multiple management nodes to reduce
the running time of the algorithm or to determine routing paths
based on locally available information.

With any routing algorithm, we may run the algorithm in
a different triggering period. For example, if the triggering
period is 1 second, we can run a routing algorithm for job
requests that arrived during the past 1 second. Therefore, the
triggering period affects the number of job requests that the
algorithm should cope with and affects the response time of
the job requests. Another factor, which has an influence on
the running time of a routing algorithm when deployed in
a real system, is whether the algorithm considers previous
job requests that are already in progress with allocated paths.

3

For example, if 10 job requests were being handled by the
previous triggering period and are being serviced, we can
either incrementally schedule newly arrived job requests or
schedule all the job requests again. Obviously, the incremental
policy has reduced running time at the price of a longer finish
time of jobs because of fewer optimized routing results.

C. LP-Based Formulations for CMRP

In general, the scheduling problems of data transfers can
be categorized into two classes from the perspective of data
transfer start time: (1) the in-advance scheduling problem and
(2) the on-demand scheduling problem. In this section, we
derive LP formulations for the on-demand scheduling problem
from a previous LP formulation for the in-advance scheduling
problem in [11]. Figure 3 presents the LP formulation for in-
advance multipath routing with the objective of minimizing
the finish time of all data transfers. A network flow problem
can be formulated as an edge or path formulation that puts
constraints on edges or paths, respectively. In that regard, the
LP formulation in Figure 3 belongs to the edge formulations.

In short, we can describe the formulation as follows. The
notation used for formulations in the paper is summarized
in Table I for ease of reference. Equation 1 and 2 are flow
conservation constraints that ensure that the total amount of
incoming flows is same as the total amount of outgoing flows
if nodes are not a source or a destination of a job; otherwise
the total amount of incoming or outgoing flows is equal to
the demand of a job, and Equations 3 and 4 are link capacity
constraints that ensure that the total amount of all flows on
a link should not exceed the capacity of the link. Readers
interested in the detailed derivation of the formulation can
refer to [11].

minimize Tf

s.t.∑
k:(l,k)∈E

f j
lk(t)−

∑
k:(k,l)∈E

f j
kl(t) = 0,

∀j ∈ J, ∀l ∈ V, l 6= sj , l 6= dj , t = 0...q (1)
q∑

t=0

(
∑

k:(l,k)∈E

f j
lk(t)−

∑
k:(k,l)∈E

f j
kl(t)) ={

Dj if l = sj
−Dj if l = dj

, ∀j ∈ J (2)

p∑
j=1

f j
lk(t) ≤ blk(t)× (Tt+1 − Tt), ∀(l, k) ∈ E, t = 0...(q − 1)

(3)
p∑

j=1

f j
lk(t) ≤ blk(t)× (Tf − Tt),∀(l, k) ∈ E, t = q (4)

f j
lk ≥ 0,∀j ∈ J (5)
Tf ≥ 0 (6)

Fig. 3: LP-based edge formulation for in-advance multipath
routing to minimize the finish time of all data transfer.

Accordingly, we can easily get the formulation for on-
demand multipath routing with the objective of minimizing
the finish time of all data transfers as presented in Figure 4.
In the case of on-demand multipath routing, Equations 7 – 9
are much simpler than Equation 1 – 4 since the formulation
doesn’t need to consider multiple time slices. More specifi-
cally, the solution for in-advance multipath routing (IAMR)
can be obtained through an iterative binary search on the
finish time Tf . In contrast, the derived LP formulation for on-
demand multipath routing (ODMR) can be solved at one time,
which leads to a much-reduced running time of the algorithm.
Even though the formulation in Figure 4 is not LP, we can
easily transform it into an LP formulation by substutiting Z
for 1/Tf and maximize Z for minimize Tf . Figure 5 shows
the matrix expression corresponding to the edge formulation
for ODMR in Figure 4.

minimize Tf

s.t.∑
k:(l,k)∈E

f j
lk −

∑
k:(k,l)∈E

f j
kl = 0, ∀j ∈ J, ∀l ∈ V, l 6= sj , l 6= dj

(7)

Tf × (
∑

k:(l,k)∈E

f j
lk −

∑
k:(k,l)∈E

f j
kl) ={

Dj if l = sj
−Dj if l = dj

, ∀j ∈ J (8)

p∑
j=1

f j
lk ≤ blk,∀(l, k) ∈ E (9)

Fig. 4: Edge formulation for on-demand multipath routing
(ODMR) to minimize the finish time of all data transfer.

minimize − Z (10)
s.t.

AF j = ZDj ,∀j ∈ J (11)
p∑

j=1

F j ≤ B (12)

Z ≥ 0 (13)

F j ≥ 0 (14)

Fig. 5: Matrix-form LP formulation for on-demand multipath
routing.

IV. DISTRIBUTED ALGORITHMS

In this section, we present the development of distributed
multipath routing algorithms using the Lagrangian method. We
also discuss the deployment of the distributed algorithms on
real data center networks.

A. Problem Decomposition
In this paper, we use the Lagrangian method [12] to decom-

pose the multipath routing problems into multiple subproblems

4

such that path computations happen in a distributed manner
and the centralized server is not a bottleneck anymore. The
general steps to apply the Lagrangian method to the develop-
ment of large-scale distributed algorithms are as follows.

1) Step 1: Formulate an original problem as a nonlin-
ear/linear programming.

2) Step 2: Find a Lagrangian function for the problem.
3) Step 3 Find a dual Lagrangian function in accordance

with the Lagrangian function.
4) Step 4: Decompose the problem based on multiple terms

in the dual Lagrangian function.

In Section III, we already formulated the problem, which
belongs to step 1. In the following sections, we present detailed
formulations and procedures regarding step 2 through step 4.

1) Lagrangian Function: The following formulations are
Lagrangian functions for the previous LP formulations. For
simplicity of expression, we use the matrix form as in Figure 6.

L(Z,F, λ, ν)

= −Z + λT (

p∑
j=1

F j −B) +

p∑
j=1

νTj (AF j − ZDj)

=

p∑
j=1

(λT + νTj A)F
j − (1 +

p∑
j=1

νTj D
j)Z − λTB (15)

λ ≥ 0 (16)
λ ∈ Rm : Lagrangian multiplier for inequalities
ν ∈ Rn : Lagrangian multiplier for equalities

Fig. 6: Matrix-form Lagrangian function for edge-form LP for
on-demand multipath routing.

In Fig. 6, λ and ν variables are called Lagrangian multipli-
ers, which are variables in the dual Lagrangian function.

2) Dual Lagrangian Function and Problem: The dual La-
grangian function can be defined as follows.

g(λ, ν)

= inf
F,Z

L(Z,F, λ, ν)

= inf
F,Z

(
p∑

j=1

(λT + νTj A)F
j − (1 +

p∑
j=1

νTj D
j)Z − λTB

)
(17)

Since F and Z are affine functions, we can further analyze
Equation 17 and get Equation 18 with constraints 19 and 20.

g(λ, ν) = −λTB (18)
s.t.

λT + νTj A >= 0, ∀j ∈ J (19)

1 +

p∑
j=1

νTj D
j = 0 (20)

We then obtain the dual Lagrangian problem as in Fig. 7
corresponding to the primal problem in Fig. 5.

maximize g(λ, ν) (21)
s.t.

λ ≥ 0 (22)

λT + νTj A >= 0,∀j ∈ J (23)

1 +

p∑
j=1

νTj D
j = 0 (24)

Fig. 7: Dual Lagrangian problem for on-demand multipath
routing.

3) Decomposed Problems and Algorithms: In this subsec-
tion, we describe the decomposition of the dual Lagrangian
problem in Fig. 7. Let λi be a Lagrangian multiplier regarding
pod i. We can assign index (k + 1) for the rest of nodes and
links that do not belong to pods. Then λi ∈ Rmi

, where mi is
the number of links in pod i and λ = [λT1 ...λ

T
k+1]

T . Similarly,
we can let νji be a Lagrangian multiplier regarding job j and
pod i. Then νji ∈ Rni

, where ni is the number of nodes in
pod i and νj = [νTj1...ν

T
jk+1]

T .
Accordingly we can partition A, B, and D into Ai, Bi,

and Di, where i = 1...(k + 1). Therefore, we can rewrite the
formulation as in Fig. 7 into the decomposed formulation as
in Fig. 8.

minimize φ =

k+1∑
i=1

φi,where φi = λiBi (25)

s.t.

λi ≥ 0, i = 1...(k + 1) (26)

λTi + νTjiAi >= 0,∀j ∈ J, i = 1...(k + 1) (27)

yi +

p∑
j=1

νTjiD
j
i = 0, i = 1...(k + 1) (28)

k+1∑
i=1

yi = 1 (29)

Fig. 8: Decomposed dual Lagrangian problem for on-demand
multipath routing.

When the distributed algorithm is deployed in real systems,
we assume that there are a centralized job request handler and
multiple schedule computation elements. When a centralized
job request handler is triggered periodically, it sends the job
information to the multiple schedule computation elements,
and each schedule computation element sends the result of a
decomposed dual problem back to the centralized job request
handler. The centralized job request handler then establishes
the paths for the job requests. This procedure is summarized
in Algorithm 1.

V. EXPERIMENTAL EVALUATION

We evaluate our algorithms through extensive simulations.
The simulations have been conducted by using synthetic

5

Category Symbol Description

Regular

Tf Finish time of all file transfers (jobs).
Z 1/Tf .
Ti The start time of ith time slice.
Dj The demand of job j.
J A set of job requests.
Jg A set of job requests belonging to group g.
n The number of nodes (= |V|).
m The number of edges (= |E|).
p The number of jobs (= |J|).
q The number of time slices to be considered.

F j
lk(t) Flow of job j on edge (l, k) ∈ E in time slice t.

blk(t) Available bandwidth on edge (l, k) ∈ E in time slice t.

Vector/Matrix

A Incidence matrix for a network, A ∈ Rn×m, Aij =

 1 if arc j enters node i.
−1 if arc j leaves node i.
0 otherwise.

F j Flow vector for job j, F j ∈ Rm.
Dj Demand vector for job j, Dj ∈ Rn.
B Bandwidth constraint matrix for a network, B ∈ Rm.

TABLE I: Notations for formulations

Algorithm 1 Distributed algorithms based on decomposition
of Lagrangian dual problem

Input: Job requests and local network status.
· The centralized job request handler sends job requests to
local schedule computation elements.
· yi is set to 1/(k + 1).
· Each schedule computation element sends the result of
a decomposed dual problem back to the centralized job
request handler and the centralized job request handler
update y in proportion to the objective value. This step is
iteratively executed until the values of y are stabilized.
· The centralized job request handler converts dual solutions
into primal solutions using LP complementary slackness
property.
· The centralized job request handler establishes the paths
for the job requests.

network topologies and job requests for data flows. The exper-
imental results are evaluated to show how well the distributed
algorithm performs compared with the centralized algorithms
and whether those distributed algorithms are feasible in real
platforms.

A. Algorithm Performance Evaluation

1) Simulation configuration: We use synthetic network
topologies for FatTree [4] by varying k from 2 up to 16 by
multiplying by 2, which corresponds to the number of hosts
ranging from 2 to 1,024. The bandwidth of all network links is
set to 10 Gbps (∼1,280 MB/s). We also synthetically generate
random data flows in a similar way as in [4] such that the
destinations of data flows are randomly selected, the number
of flow per host (FPH) is increased from 1 to 5 to simulate
different network traffic loads in data center networks, and the
length of data flows is pareto distributed where α = 1 and the
value is multiplied by 1024.

We use AMPL [13] to implement our LP-based algorithms
and snopt [14], which is developed by Stanford University, as
an LP solver. Fig. 9 shows our experimental configuration. The

host on which simulations are run has 16 AMD Opteron(tm)
processors with 2 GHz, but only a single CPU is used because
of the limitation of the LP solver, snopt.

Workstation

AMPL

C
pl

ex

S
no

pt

Fi
lte

r

•  Synthetic FatTree topologies
•  Synthetic job requests
•  Schedule results

Fig. 9: Test environment.

2) Results and evaluation: Fig. 10 shows that the running
time of the centralized algorithm as the network size grows
from k = 2(# hosts=2) to k = 16(# hosts=1024) when FPH
is 1. The running time of the centralized algorithm increases
dramatically from a few seconds when k = 2, 4, 8 to over an
hour when k = 16.

Fig. 11 shows that the running time of the centralized
algorithm as the number of jobs grows. In contrast to the
results of running time vs. network size, the running time
almost linearly grows as the number of jobs grows.

Fig. 12 shows that the running time of the distributed
algorithm as the network size grows from k = 2(# hosts=2)
to k = 16(# hosts=1024) when FPH is 1. The distributed
algorithm could achieve the running time of a few minutes
even for k = 16 and the finish time of jobs is 10% more than
the optimal solution of the centralized algorithm.

6

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

3500.000

4000.000

4500.000

5000.000

2 4 8 16

C
om

pu
ta

tio
n

Ti
m

e
(s

)

k in FatTree Topology (When FPH=1)

Fig. 10: Running time of the centralized algorithm as the
network size grows.

0.000

50.000

100.000

150.000

200.000

250.000

300.000

1 2 3 4 5

C
om

pu
ta

tio
n

Ti
m

e
(s

)

FPH (When k=8)

Fig. 11: Running time of the centralized algorithm as the
number of jobs grows.

0

20

40

60

80

100

120

140

160

2 4 8 16

C
om

pu
ta

tio
n

Ti
m

e
(s

)

k in FatTree Topology (When FPH=1)

Fig. 12: Running time of the distributed algorithm as the
network size grows.

VI. RELATED WORK

We describe related work in the diverse contexts includ-
ing multipath and distributed routing algorithms. Many prior
studies have been done regarding multipath data transfer. To
capture the whole picture of those studies, we classify them
with regard to constraints on a data transfer request, path
properties, and the goal of an algorithm. Table II summarizes
multipath routing algorithms for various multipath routing

problems based on those three criteria.
In the following, we present the details of the related work

and shortly highlight our contribution in comparison with
those works.

A user request for data transfer may comprise multiple
tuples with different constraints as follows.

• Deadline: If a deadline is given per request, the multipath
schedule for requests should meet the deadlines or at least
minimize the extent that the data transfer time passes the
deadline.

• Latency/delay: In some cases such as interactive data
manipulation, latency or delay is an important factor to
consider. The constraints on latency/delay are usually
closely related to delays on network links. These con-
straints may be represented by path length or hop number,
which has close a relationship with latency and delay.

• In-advance: In contrast to on-demand data transfer re-
quests, in-advance requests require network path reser-
vations in the future, which often lead to time-varying
network resource management and sophisticated routing
algorithms for optimized resource utilization.

With these constraints on requests, routing algorithms out-
put routing paths for data transfers. Depending on the circum-
stances of a system, output paths have different properties as
follows.

• Dynamic: A dynamic path can vary over time. For
instance, the network paths used for a certain request can
be altered in the middle of data transfer. Dynamic paths
are feasible in a system where the path-switching cost
as well as the time complexity of a routing algorithm is
reasonably low.

• Limited number: The number of routing paths for a
request may need to be restricted for similar reasons to
those discussed for dynamic paths. The smaller number
of paths may make it easier to establish and compute
paths. For example, if we explore a solution among the
given feasible path set, routing algorithms usually take
less time to compute optimal paths than when we explore
all possible paths.

The following goals for routing algorithms are popular.
• Minimizing network congestion: This goal is to minimize

the maximum ratio of used bandwidth and the link capac-
ity for all network links. This is often achieved through
algorithms adapted from the general multi-commodity
flow problem [20].

• Maximizing network throughput: This goal is also to
maximize network utilization. It is often achieved through
algorithms adapted from the maximum concurrent flow
problem (MCFP) [21].

• Maximizing fairness: This goal is to guarantee max-
min fairness among flows; this is often achieved through
algorithms adapted from the max-min fairness algorithm
combined with the multi-commodity flow problem.

• Minimizing finish time: This goal is to finish all the
data transfer requests as early as possible. This is often
achieved through algorithms adapted from the maximum
flow problem [20].

7

Constraint on a Request Path Property Controller Requests Representative Goal
Deadline Delay In-Advance Length Number Dynamic Cntr/Dist 1/M study√ √

Cntr 1 [15] -√ √
Cntr 1 [16] Minimizing network congestion√
Cntr M [17] Minimizing network congestion√ √ √ √
Cntr M [18] Maximizing network throughput√
Cntr M [19] Balancing fairness and throughput√ √ √
Cntr M [11] Minimizing finish time

TABLE II: Multipath routing algorithms for bulk data (file) transfers

Our work is distinguished from the previous work because
our proposed algorithms are distributed and scale well as the
size of a network grows.

VII. CONCLUSIONS AND FUTURE WORK

We developed a distributed multipath routing algorithm
to minimize the finish time given the multiple jobs. We
conducted experiments using synthetic FatTree networks and
job requests, and the results show the distributed algorithm
performs much better than the centralized algorithm in terms
of running time and is comparable to the centralized algorithm
within 10% increased finish time in terms of data transfer
time. As future work, we plan to conduct dynamic network
simulations where jobs arrive and schedulers are triggered
as time passes. In this way, we will be able to measure
more accurately the effects of distributed algorithms from the
perspective of network utilization.

ACKNOWLEDGMENTS

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(”Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

This material was based or was supported by the U.S.
Department of Energy, Office of Science, Advanced Scien-
tific Computing Research Program, under Contract DE-AC02-
06CH11357.

REFERENCES

[1] “Synergistic challenges in data-intensive science and
exascale computing,” http://science.energy.gov/ /me-
dia/40749FD92B58438594256267425C4AD1.ashx, Apr. 2014.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: dynamic flow scheduling for data center
networks,” in Proceedings of the 7th USENIX conference on Networked
systems design and implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, p. 1919, ACM ID: 1855730. [Online].
Available: http://portal.acm.org/citation.cfm?id=1855711.1855730

[3] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Fast
pattern-specific routing for fat tree networks,” ACM Trans. Archit. Code
Optim., vol. 10, no. 4, p. 36:136:25, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2555289.2555293

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication. New York, NY, USA:
ACM, 2008, p. 6374. [Online]. Available: http://doi.acm.org/10.1145/
1402958.1402967

[5] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008, p. 7788.
[Online]. Available: http://dx.doi.org/10.1109/ISCA.2008.19

[6] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard,
IL: USENIX, 2013, p. 399412. [Online]. Available: https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/liu vincent

[7] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in 2014 Proceedings IEEE
INFOCOM, Apr. 2014, pp. 1617–1625.

[8] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proceedings of the ACM SIGCOMM 2011
Conference. New York, NY, USA: ACM, 2011, p. 266277. [Online].
Available: http://doi.acm.org/10.1145/2018436.2018467

[9] R. R. Expsito, G. L. Taboada, S. Ramos, J. Tourio, and R. Doallo,
“Performance analysis of HPC applications in the cloud,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 218–229, Jan.
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X12001458

[10] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. New York, NY, USA:
ACM, 2013, p. 231242. [Online]. Available: http://doi.acm.org/10.1145/
2486001.2486021

[11] Y. Li, S. Ranka, and S. Sahni, “In-advance path reservation for file
transfers in e-science applications,” The Journal of Supercomputing,
vol. 59, no. 3, pp. 1167–1187, 2012. [Online]. Available: http:
//link.springer.com/article/10.1007/s11227-010-0509-9

[12] S. Nash and A. Sofer, Linear and nonlinear programming, ser.
McGraw-Hill series in industrial engineering and management science.
McGraw-Hill, 1996. [Online]. Available: http://books.google.com/
books?id=MQAoAQAAMAAJ

[13] “AMPL - STREAMLINED MODELING FOR REAL OPTIMIZA-
TION.” [Online]. Available: http://ampl.com/

[14] “SNOPT.” [Online]. Available: http://www.sbsi-sol-optimize.com/asp/
sol product snopt.htm

[15] N. Rao and S. Batsell, “QoS routing via multiple paths using bandwidth
reservation,” in Proceedings of INFOCOM ’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 1,
1998, pp. 11–18.

[16] R. Banner and A. Orda, “Multipath routing algorithms
for congestion minimization,” IEEE/ACM Trans. Netw.,
vol. 15, no. 2, pp. 413–424, 2007. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1279660.1279673&coll=
GUIDE&dl=GUIDE&CFID=18436580&CFTOKEN=35906744

[17] Y. Lee, Y. Seok, Y. Choi, and C. Kim, “A constrained multipath
traffic engineering scheme for MPLS networks,” in IEEE International
Conference on Communications, vol. 4, 2002, pp. 2431–2436 vol.4.

[18] K. Rajah, S. Ranka, and Y. Xia, “Advance reservations and scheduling
for bulk transfers in research networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 20, no. 11, pp. 1682–1697, 2009.
[Online]. Available: 10.1109/TPDS.2008.250

[19] E. Danna, S. Mandal, and A. Singh, “A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering,”
in 2012 Proceedings IEEE INFOCOM, 2012, pp. 846–854.

8

[20] R. Ahuja, Network flows: theory, algorithms, and applications. Engle-
wood Cliffs N.J.: Prentice Hall, 1993.

[21] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” J. ACM, vol. 37, no. 2, p. 318334, Apr. 1990. [Online].
Available: http://doi.acm.org/10.1145/77600.77620

